

Event-chain-centric architecture design of Driver Assistance

Systems

Mastering technical complexity using a cross-architectural methodology

Frieder Heckmann, Valeo Schalter und Sensoren GmbH

Ralf Münzenberger, INCHRON AG

Modern driver assistance functions are realized by the interaction of various hard-

ware and software components. To make the ever-increasing complexity managea-

ble, Valeo uses an architecture design focused on event chains, taking the function-

ality of the entire vehicle into account. This allows a dynamic architecture to be de-

signed at an early stage of development at the logical architecture level, independ-

ent of any specific technology and validated by simulation. Integration require-

ments for the technical architecture can be derived from the logical architecture

and verified with integration tests. This article uses the illustrative example of a

driver assistance function (emergency brake assist) to demonstrate the methodol-

ogy developed for this purpose.

Initial situation

Valeo develops end-customer functions for driver assistance systems that are realized

through the interaction of sensors, actuators, and electronic control units (ECU). Valeo

has responsibility for the overall end-customer function, i.e., the vehicle should behave

as specified by the OEM (Original Equipment Manufacturer). However, Valeo only de-

velops the functional software and, when required, the sensors, while the OEM is usu-

ally responsible for the actuators and the vehicle bus. Therefore, when considering the

end-to-end behavior of the vehicle system, Valeo must also make allowance for aspects

of the system for which Valeo is not responsible.

For the modeling of the end-to-end behavior, event chains have established themselves

as a competent manner to model data flow at the vehicle level, abstracted from technical

details, e.g., from a sensor to the actuator via one or more vehicle buses and ECUs. The

event chains are also used to specify the timing requirements and budgets of the compo-

nents for the event chain steps for which Valeo is responsible, as well as the timing

budgets for the event chain steps for which the OEM is responsible.

Based on such event chains, a dynamic architecture is designed at the logical level.

Since the timing requirements are the basis for the development of the overall function,

they are verified by a real-time simulation and coordinated with the other project partic-

ipants. Since event chains play a central role in the development project, we can speak

of an event-chain-centric architecture design.

Derivation of the end-to-end requirements

A typical function of a low-speed maneuvering system is the emergency brake assist, as

defined by NCAP. The Car-to-Pedestrian Reverse Adult (CPRA) use case presented be-

low is taken from the EURO NCAP Protocol AEB VRU systems (EURO NCAP, 2021).

It defines the conditions imposed on the vehicle and the environment but does not spec-

ify how to implement the use case. The realization depends on the vehicle, and it is the

task of the architect to design the vehicle architecture in a way that the NCAP require-

ments can be fulfilled.

Figure 1 shows the corresponding derivation of the time budget (end-to-end latency)

available to the vehicle for triggering the emergency braking. The diagram distinguishes

between the real-world dimension (Pique, 2014), i.e., those properties dictated by the

use case definition, and the OEM vehicle dimension, whose parameters are vehicle-spe-

cific.

Figure 1: Derivation of the real-time requirements for the vehicle from the given use case

The timing budget for the vehicle (here 0.87 s) is divided between the sensors, actua-

tors, and ECU(s) in the next architecture design step using event chains. Typically there

are empirical values available for these that can be used for an initial specification.

Modeling of an event chain

The architect specifies the emergency brake assist function as an event chain using the

logical elements resulting from the functional breakdown (Hedderich, 2019) and de-

scribes the timing of the processing steps in a strictly sequential manner. Logical ele-

ments include sensors, actuators, and software (SW) blocks. These are detached from

the concrete hardware (HW) platform. The event chains are defined in a model-based

development tool in UML (Unified Modeling Language, 2021). The event chain can be

exported automatically to a simulation tool to validate the timing requirements associ-

ated with the event chains.

Figure 2 shows an example of the modeling of the event chain of an emergency brake as-

sist as a UML sequence diagram and the timing budgets assigned to the individual steps

for sensor tsensor, ECU tECU , and braking system tBrake. In addition to the logical ele-

ments, it also contains two interfaces (If and Bus). These interfaces demarcate the ECU

system from the sensor and the brake system, respectively. Three sensor measurements

are required for reliable detection of an object. This is modeled by self-referencing the

sensor with the edge label Rep=3.

Figure 2: Example modeling of the event chain for an emergency brake assist function

Modeling elements for architecture design

The dynamic architecture includes all architecture timing constraints relevant for the

specification of the temporal behavior. In the application example from Figure 2, these

are the activation conditions, execution times, and delays in communication. These pa-

rameters must be defined so that the event chains meet the timing requirements while

minimizing CPU load.

The logical elements are grouped into Execution Groups (EG) to simplify the design, as

shown in Figure 3. An EG can be compared to a Basic Task in AUTOSAR (AUTOSAR

Consortium, 2021). The logical elements correspond to runnables that the task activates

sequentially. A unique feature is that the EG only processes the data that is available

when activated, and the calculation results are only available when it is terminated.

Figure 3: Structure of the Execution Groups of the Emergency Brake Assist Application Example

The concept of EGs simplifies architectural design by decreasing the number of ele-

ments to be considered and simplifies integration by allowing only pre-integrated

groups to be deployed. The formation of EGs is based on the following criteria:

- Dependencies between the logical elements

- Dependency on sensor update rate

- Dependence on the vehicle bus timing

For example, SensorPostProc from Figure 3 forms its own EG because it depends on the

update rate of the sensor and, thus, can be activated independently of the other elements.

The Environmental Model uses data from multiple sensors, including odometry data, as

inputs. Since such input data typically have varying update cycles, the Env Model and

those elements with a strong logical dependency form a single EG.

Long Control provides data for the bus. Therefore, it should be possible to activate it in-

dependently of the other EGs. The EG additionally contains a Lat Control element to in-

dicate that the EG in a complex system may also contain several logical elements.

The following aspects are sufficient for modeling the dynamic behavior of an EG:

- Activation condition: Cyclic vs. event triggered.

- Max. response time of an Execution Group: Time between activation and end.

- Communication delay: Maximum latentency of communication between two

EGs.

The UML profile shown in Figure 4 can be derived from these requirements, which is

sufficient for describing the dynamic architecture at the logical level.

Figure 4: Elements for modeling the dynamic architecture

Design of the dynamic architecture at the logical level

Figure 5 shows a preliminary architecture conceptual design. Braking and sensing sys-

tems are modeled as EGs since they also have timing requirements. The pedestrian rep-

resents a special feature. Although not part of the system, it is required within the envi-

ronment model both for simulation and requirements evaluation.

Figure 5: Graphical representation of the dynamic architecture

In this example, the sensor performs a measurement every 70 ms with a measurement

jitter of 1ms. After a maximum of 40 ms, the measurement is processed and the data is

provided to the ECU. The port represents the system boundary between the sensor and

ECU. After a maximum of 5 ms, the ECU must trigger the EG Sensor PostProc, which

has a maximum response time of 10 ms. The maximum acceptable delay in the data

transfer to the EG Function Block must not exceed 10 ms. Next, the data is processed by

the cyclically activated EGs Function Block and Vehicle Ctrl. The system cyclically ac-

tivates the port between ECU System and Vehicle System. This simulates the bus be-

havior under the assumption that a bus update must take place every 25 ms. The delay

on the bus and the brake system is 100 ms and 400 ms, respectively.

Verification through simulation

The event chains from Figure 2 and the architecture from Figure 5 can be transferred to a

simulation model. This makes it possible to simulate the dynamic system behavior and

check it against the real-time requirements. Valeo uses chronSIM (INCHRON AG,

2021) for this purpose, which performs the validation automatically.

Figure 6 shows the event chain (top), as defined in Figure 2, together with the activation

of the individual EGs encapsulating the elements used in the event chain, including the

pedestrian relevant for the activation. Simulations with the real-time simulator chron-

SIM determine the latency for each event chain pass and compare it against the require-

ment from the analysis shown in Figure 2.

Figure 6: Simulation of the dynamic architecture including event chains

Figure 7 plots the latencies determined from the simulation as a histogram and shows

that the majority of the simulated event chains violate the timing requirements. The his-

togram shows the distribution of the event chain latency. It exhibits a wide spread be-

cause the jitter of the individual timer elements leads to changing latencies between the

EGs that influence the overall end-to-end latency. Since the architecture design exceeds

the maximum latency of 870ms it must be optimized.

Figure 7: Histogram of event chain latencies

Optimization step

The evaluation of the simulation in Figure 6 shows that the event chain is routed through

two successive instances of the EG Function Block before the result is available for the

EG Vehicle Control. This is because, in the event chain definition in Figure 2, the logical

element Arbitration follows Rating. However, in the logical architecture, the activation

of Arbitration in the EG FunctionBlk occurs before Rating. Moving the Arbitration

component to the end of the EG execution sequence fixes this problem.

Figure 8 shows an alternative architecture design that contains some further optimiza-

tions. Vehicle Ctrl triggers Function Block every second activation, reducing the latency

between the two EGs compared to the first design. The response time of Vehicle Ctrl

and Function Blk, as well as the communication delay between these EGs and the Bus,

was reduced in order to fulfill the timing requirements given by the event chain.

Figure 8: Optimized architectural design

Figure 9 shows the distribution of the end-to-end latencies of the event chains as a histo-

gram in chronSIM after the achitectural optimization. The maximum latency of 870 ms

is no longer exceeded, and the spread of the distribution is narrower compared to the re-

sults from Figure 7.

Figure 9: Histogram of the event chain latencies after optimization

Deriving the timing requirements for integration testing

Timing errors are challenging to find in the vehicle or HIL test since they only show up

indirectly through faulty functional behavior, and often only occur sporadically. There-

fore, it is crucial to test the timing integration requirements continuously and on a broad

basis. The integration requirements can be derived directly from the logical architecture

(Figure 8) and include:

- The response time of the EGs,

- the activation requirements of the EGs,

- and the communication delay between the EGs.

If the technical architecture meets these requirements, it also executes the event chains

within the defined timing budget. This could be evaluated using a timing model of the

technical architecture with chronSIM.

In order to execute such tests on the target, the system requires around 5 kBit/s band-

width to record the timing data needed for an evaluation of the integration requirements,

as shown in Figure 8. This data can be output via the vehicle bus, and recording is possi-

ble without additional HW effort (within a test fleet).

Tools like chronVIEW (INCHRON AG, 2021) can analyze the traces automatically and

check them against the requirements of the logical architecture. Thus, large data sets can

be evaluated and can detect even rarely occurring errors in timing behavior.

Summary

The design of a robust architecture for a driver assistance system is only possible by

considering the end-to-end behavior of the entire function. The event-chain-centered ar-

chitecture design presented in this article is a method proven in practice to specify the

real-time requirements and use them to develop a dynamic architecture at the logical

level. Automated validation of the architecture design helps to make the system man-

ageable, as this is the only way to automatically test many event chains such as those

found in complex driver assistance systems.

The requirements for the technical architecture and criteria for the system integration

test can be derived from the logical architecture. This ensures consistency between de-

sign and testing in a project since the requirements originate from a single source.

References
AUTOSAR Consortium. (2021). AUTOSAR. Von AUTOSAR: https://www.autosar.org/ abgerufen

EURO NCAP. (2021). TEST PROTOCOL – AEB VRU systems.

Hedderich, M. a. (2019). SEMAS – System Engineering Methodology for Automated Systems |

The world described in layers. MBMV 2019; 22nd Workshop - Methods and Description

Languages for Modelling and Verification of Circuits and Systems.

INCHRON AG. (2021). INCHRON. Von www.inchron.com/chronVIEW abgerufen

Pique, J.-D. (2014). SysCARS – SysML for embedded automotive systems. ERTS.

