
Why an Event-Chain-Centered
Architecture Design Is the Right Response
to the Challenges of Developing
Software-Defined Vehicles

WHITEPAPER

Author: Dipl. Inf. Florian Mayer, INCHRON AG

As the automotive industry moves to the software-defined vehicle
and selling feature upgrades updated over the air, it is clear that
the development approach used for static architectures is no
longer fit for purpose. Adding timing requirements to flowcharts
enables engineers to quantify the impact of hardware changes,
feature changes, and feature updates on today’s domain
controllers and automotive high-performance computing (HPC)
platforms. Discover how this approach significantly reduces the
issues typically arising during integration that are found late in the
development process, securing the dynamism the automotive
industry seeks from the software-defined vehicle.

Why an event-chain-centered architecture design is the correct response
to the challenges of developing software-defined vehicles

Function nets cannot remain the supreme structure
by which E/E architectures are organized

The automotive industry is transitioning from
today’s predominantly domain-oriented E/E
architecture toward a zonal architecture. This
provides OEMs with an approach that enables
greater flexibility that, thanks to a focus on
services and high-performance compute
platforms (HPC), ensures continuous product

maintenance over a vehicle’s lifetime. Short
development cycles detached from the traditio-
nal vehicle development approach, coupled with
over-the-air updates, will deliver on this vision of
the software-defined vehicle, enabling functiona-
lity to be added by users in the form of upgrades
after purchase.

With software already accounting for the vast
majority of added value in the vehicle, hardware
dependency must be pushed as far back in the
development process as possible. In fact, it must
be possible to define and develop software
almost independently of the hardware. This also
affects requirements management, something
that is currently still far too oriented towards
static architectures, often in the form of function
nets. Although this remains indispensable for
decomposing the overall system into its logical
and technical components of software and hard-
ware, it is already the result of a much more deci-
sive step: The analysis of the processes in the
system that are necessary to achieve a specific
customer function. Finally, many such functions
must be allocated to the available resources in
the finished vehicle without causing conflicts.

The actual know-how of vehicle manufacturers
lies in their knowledge, built up through years of
experience and systematic collection of user
feedback, as to which dynamic requirements can
be experienced and differentiated by their custo-
mers. For example, how many milliseconds
should elapse between pressing a control and
the acoustic, haptic, and visual feedback? After
what time should a lane-changing automated
driving function initiate a lane change? And how
should this time vary between the sportier and
more comfort-focused driver?

Even these limited examples highlight how a
single system component, typically implemented
as a software processing step, is reused in sever-
al scenarios or customer functions to satisfy
completely different requirements. Additionally,
that processing step can range from simple,
such as controlling a turn signal, to highly com-
plex, such as the selection of an optimal driving
maneuver.

2INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

With requirements management approaches
oriented only to the structure of the function net,
it is impossible to capture these varying cont-
ext-sensitive requirements separately and inde-
pendently of one another. As a result, continuous
maintenance and traceability through to
testing are virtually impossible [1] .

Function nets mix up the causal relationships of
most logical processing steps, thereby obscuring
the view of the causal relationships between the

function blocks. The signal networks between
the blocks may even contain cycles that would
be missing in a purely causal view (Figure 1). It is
not possible to unambiguously determine an
end-to-end latency without decomposing the
network back into its causal relationships. So
why not start with the causal relationships in the
requirements management and link them to the
functional network via trace links?

3INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Figure 1:
Example of a function net (black) with two causal event chains, EC1 (blue) and EC2 (red).
While the function net contains a cycle, neither EC1 nor EC2 is cyclical.

4INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

How event-chain-centered architecture design
solves the problem

Event chains describe causal relationships
between the steps previously described by
decomposing a behavior. In software, but also in
system design, we often speak here of ‘proces-
sing steps in a sequence.’

Let us consider the system ‘hazard warning
lights’ and how event chain analysis affects the
precision of the dynamic requirements. The first
obvious event chain handles the switching-on of
the hazard light feature. The second event chain
deals with the cyclical switching of all the lamps.
Both aspects can be experienced by the vehicle’s
user and are therefore of central importance for
the system.

Event chains enable the precise analysis of the
causal relationships involved in each scenario
and thus also the assignment of requirements to
the event chain step in the context of the scena-
rio. For example, during the switch-on of the
indicator LEDs, the software component’s laten-
cy is important. However, when it comes to cont-
rolling the flashing, the synchronicity between
the lamps during ongoing operation is of primary
concern.

Event chains thus enable the separation of static
and dynamic architecture and are key to the follo-
wing critical architecture design patterns:

• Separation of Concerns: All important require-
ments for dynamic behavior can be clearly
assigned at the event chain steps in require-
ments management, and can even be main-
tained there at a logical level independent of
static decomposition as provided by a function
net. This also brings the valuable know-how of
the vehicle manufacturers one step further
removed from the technical level.

• Modularity: Essential for software-defined
vehicles, but already being driven by today’s
platform-thinking with variants, it is necessary
to enable or disable various customer func-
tions within a project. In addition, there is the
aspect of multiple use: Static components
(e.g., software components that implement
specific processing steps) can be required
several times in different customer functions,
or even variants thereof, but must still meet
specific requirements in each use case (reused
software components).

• Test and Verification: Since requirements are
assigned to event chain steps, this means they
can be assigned for testing to precisely the test
case, location, and time for which they are also
relevant or verifiable. This leads to a consistent
derivation of test cases, enabling a path from
the requirement to its acceptance to be estab-
lished.

5INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Why sequence diagrams
quickly reach their limits

Unfortunately, SysML sequence diagrams are
only suited to simple descriptions of many dyna-
mic processes. Certainly, they support modeling
control flows such as alternative paths, loops, or
parallel execution. So, there is no question of
whether sequence diagrams can describe com-
binations of different flows. However, as seen in
Figure 2, they rapidly reach their limits.

The dependency graph shows that the final node
(bottom) can only be reached when all its
predecessors, here C and D, have been reached.
But these, in turn, depend on A and B. The chal-
lenges associated with describing all possible
sequential processes in a sequence diagram
quickly materializes as the results become
unnecessarily complex and challenging to read.

Figure 2:
Example of dependency graphs (left) and the corresponding sequence diagram (right) that,
as a result, has become complex to read.

6INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Flowcharts are an effective tool for
effective event-chain-centric architecture design

tion of the description of causal relationships
from the process or function calls executed at
the technical level that is subject to scheduling.

For example, if a function is permanently assi-
gned to a specific process within a specific
period, it is executed cyclically. However, due to
the execution semantics of the associated event
chain, an event chain step that refers to this func-
tion is only switched on when the causally neces-
sary previous steps have also been observable in
the system since that event chain’s start. In this
way, it is possible to start a timer when the trigger
event for the event chain occurs to then measure
the respective time in the context of the event
chain for the function calls that causally follow. In
this way, the time required for an emergency
braking function to reach the desired braking
pressure from the sudden occurrence of an
external obstacle can be specified precisely in a
machine-readable form.

Flowcharts, as defined by the OMG[2], are well
suited to record the previously mentioned
aspects of an event chain in a formal and machi-
ne-readable way, even for complex scenarios.
They are well known, supported by a wide range
of architectural tools, easy to understand, and,
like sequence diagrams, offer formally specified
execution semantics that makes them easy to
simulate.

When compared to the classical, purely linear
form of event chains, they have the advantage
that they provide the linguistic means needed to
describe almost any arbitrarily complex process.
As we will show later, they are particularly helpful
to phrase timing requirements to assure correct
behavior on complex patterns like the safety
supervisor.

Analogous to the separation of dynamic and
static architecture, flowcharts enable the separa-

Methods for simplifying
the design of complex functions

A vital tool in the development team’s toolbox is
the ability to separate function from implementa-
tion. As far as possible, the implementation
should also be independent of the hardware
architecture. This is known as separation of
concerns.

Consider the customer-function “advanced
driving system” (ADS). This customer function
employs several sub-components that are
divided further into sub-functions. ADS_Planner,

one of these sub-functions, cyclically delivers a
new path to the vehicle’s actuators. The safety
supervisor (SSV), a sub-component, adds redun-
dancy and diverse software design for accident
prevention for safety reasons (Figure 3). This is
achieved by comparing the path provided by the
ADS_Planner with its own analysis of the traffic
situation, based on less complex sensor informa-
tion, with the only aim to foresee an imminent
collision when continuing to follow that path.

If it detects such a threat, it would switch to an
alternative safe path. More on the safety
supervi-sor pattern can be found in work by M.
Törngren[3] and other similar sources.

This is analogous to a learner driver failing their
driving test when the driving instructor has to
intervene. Such a path switch is considered an
error in the system and would lead to a safety
shutdown, which is, of course, to be avoided.
Therefore, it is crucial to coordinate the timing
between the ADS Planner and the SSV so that the
ADS Planner can handle dangerous situations
independently and without unrequired interventi-
on by the SSV.

Without an event-chain-driven architecture
design, this circumstance only becomes appa-
rent at the technical level because this is when

the actual runtimes and cycle times of the tasks
become known. Integrators cannot tackle this
challenge because the causal dependencies
between the functional chain steps are unknown
at their stage in the development process. Thus,
they are unable to identify and eliminate such
issues systematically.

By introducing event chains, complex timing
requirements can be added to capture and avoid
these situations. As can be seen in Figure 3,
timing requirements can be formulated based on
the steps of an activity chart. This timing require-
ment assures that, after a concrete sensing
response from Sensor A has been acquired,
Sfty_Fusion should not complete before ADS_-
Planner, thus assuring that no safety shutdown
due to a timing issue can occur.

7INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Figure 3:
Example of a synchronicity timing requirement:
“The ADS_Planner must complete before Sfty_Fusion”

Figure 4 shows a timing sequence that, from the
integrator’s point of view, looks acceptable
because all tasks can be processed within their
period. However, the problem of inconsistent
data between ADS and SSV materializes at time
instance tsfty_shutdown .

SSV starts, but ADS_Planner has not yet proces-
sed the most recent sample from Sensor_A.
Therefore, the SSV will initiate a safety shutdown
although the ADS_Planner completes its com-
putation in time (with regards to its deadline
determined by its period).

Including the timing of event chains within the
requirements management can resolve such
challenges independently of further architectural
decisions, such as mapping functions to proces-
ses on cores. With event chains providing the

exact timing requirements, the system integrator
clearly sees the synchronicity requirements’
violation (see Figure 4). They can now apply
countermeasures without having to involve the
function developers.

8INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Figure 4:
State-chart visualization of the timing sequence ADS when mapped to hardware with two cores.

Modularity

The future of the software-defined vehicle
depends on modularity. New functions can be
added to existing systems that rely on data provi-
ded by existing sensors and data-fusion modu-
les. The challenge is proving that adding these
capabilities does not impact existing functionali-
ty.

Let’s assume that our simple ADS will be exten-
ded to include a lane change maneuver (LCM)
function. Because of the increased complexity,
several functional requirements must be added
to the ADS_Planner. All this information is captu-
red in a new event chain, “LCM.” The new system
now has to implement both the ADS event chain
and the new LCM event chain (refer to Figure 3).
It should be noted that the LCM event chain
would structurally look the same but with more
functional requirements attached to it. It should
be kept in mind that each event chain refers to
different scenarios. ADS addresses driving
scenarios where no lane change is involved, and
LCM addresses scenarios for the extended func-
tionality, including lane change. The effect on the
existing implementation is that more functional
requirements need to be implemented by ADS_-
Planner, resulting in longer overall runtimes.

Let’s further assume our vehicle OEM has two
car models, a base car with simple hardware
named ‘Small-Foot,’ and a luxury car with more
powerful hardware named ‘Big-Foot.’

The new implementation of ADS_Planner misses
its timing requirements when running on the
Small-Foot hardware but meets them when
executed on Big-Foot. Therefore, the OEM can
offer the upgrade only for luxury cars by exchan-
ging the implementation of ADS_Planner.

Using event chains can even help when more
detail is needed. Let’s assume the new imple-
mentation of ADS_Planner would miss its timing
requirements even on Big-Foot but only under
specific environmental conditions. This occurs
when the vehicle is inside a tunnel with many
fluorescent tubes, making the vision process
more computationally intensive. In this case, the
developers could decide to disable lane-change
at runtime if vision processing exceeds a specific
timing budget and temporarily fall back to ADS
without lane-change. This detailed understan-
ding of event chains helps maintain traceability
between functional and timing requirements and
their implementation, even in complex scenarios
determined by hardware decisions, variants, and
other choices.

9INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Test and Verification

Testing traditionally focuses on correct functio-
nality, with tests designed to check that, for
example, the headlights turn on through manual
switch operation or in response to sundown
while driving.

What is overlooked, however, is the temporal
aspect of testing. For example, does our ADS_-
Planner step still fulfill its timing requirements
once integrated alongside other functions? With
timing as part of the requirements, it is easy to
create such tests and ensure that they are tested
throughout the development process and under
the defined operational conditions. Event chains
allow a clear definition of a start-event, and iden-
tification of intermediate steps and phrase timing
requirements between those steps. Event chain
steps map to functions within the function net.
Therefore, events emitted by these functions
(e.g., start or end of a function) can now be seen
in the context of the state of the event chain – the
event chain instance. The event chain can be
seen as a specification of what an observer
needs to observe to check whether the device or
system under test meets its requirements.

Any time the start event of an event chain beco-
mes observable in the system under test, the
observer would start a new instance of the event
chain and assign a state to it. The state describes
how far the instance could have progressed due
to the events observed after the start event. The
observer can therefore check any requirements
based on the steps currently being progressed or
switched on.

The example in Figure 4 showed how an obser-
ver would trigger the yellow event chain instance
while observing the starts and ends of the func-
tions (any yellow arrow marks a new state)
referenced from event chain ADS in Figure 3. As
soon as a test bench is available to observe the
steps relevant to the event chains, the above
concept of an observer based on event chains
can easily verify even complex timing require-
ments such as the one depicted earlier related to
synchronization. This is the case even if one
event chain is simultaneously active in multiple
event chain instances because its start event has
been triggered multiple times.

Note that once all timing requirements are captu-
red, and all timing parameters needed to approxi-
mate the timing behavior of the system under
test are available, it is possible to verify the timing
requirements. This is achieved even in non-func-
tional simulations with tools like chronSUITE,
even before a functional implementation is avai-
lable. Such simulations are helpful to assure
fulfillment of timing requirements after develop-
ment iterations, feature enhancements, and
other changes without having to go through HIL
testing. It also allows consistency checking and
a review of the static architecture against the
dynamic requirements at the earlier stages of the
development process.

10INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

Summary

As the automotive industry transitions to the
software-defined vehicle, domain controllers, and
high-performance computing (HPC), it is clear
that the traditional approach to software
development is no longer suitable. With a focus
on modularity, software reuse, and over-the-air
updates for fixes and upgrades, the methods
used to create yesterday’s static architectures no
longer work for dynamic, AUTOSAR Adaptive
solutions.

As highlighted through the examples provided
here, specifying timing requirements early and in
the context of scenarios separates the dynamic
architecture from the static architecture, even at
functional level. This leaves architects and
system integrators with more degrees of
freedom when undertaking design decisions. As
they work through hardware selection or the
assignment of tasks to core, the demands of
each task or runnable in the context of the broa-
der application are significantly clearer.

Additionally, it delivers greater stability at the
logical layer. Bearing in mind the importance of
reuse, timing requirements can live with their
functions and scenarios, allowing code to be
reused more successfully in new projects or even
in cost-optimized solutions. Thanks to the
derived timing tests and verification, it also provi-
des more confidence when new functionality is
added to an existing codebase.

Event-chain-centered architecture design allows
system architects and automotive development
teams to tackle these new challenges. Activity
charts, as specified by the OMG, are the ideal
technology to describe event-chains simply and
effectively.

Automotive software teams that move to a dyna-
mic, event-chain-driven system design process
find that the timing-related issues described here
rarely appear in their projects. After hundreds of
projects at a host of automotive OEMs, Tier 1s,
and sub-suppliers, Inchron’s chronSUITE has not
only become a standard tool in the development
process, it is recognized as important enough to
warrant changing that process.

11INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

If you’d like to learn more about how Inchron’s chronSUITE is used to tackle such
challenges, whether on a running project or from the start of a new one, please feel
free to get in touch.

We’d be more than happy to help.

1 O. Burrkacky et al., “When code is king: Mastering automotive software excellence,” McKinsey &
Company, February 2021:
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/when-code-is-king-ma
stering-automotive-software-excellence

2 ”OMG Systems Modeling Language (OMG SysML™),” The Object Management Group, November
2019: https://www.omg.org/spec/SysML/1.6/PDF, Chapter 11.2.1ff

3 M. Törngren et al., “Architecting Safety Supervisors for High Levels of Automated Driving,” 2018 21st
International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 2018, pp. 1721-1728.
doi: 10.1109/ITSC.2018.8569945

12INCHRON AG | Neumühle 24-26 | 91056 Erlangen / Germany | E-mail: contact@inchron.com

References

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/when-code-is-king-mastering-automotive-software-excellence

