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As the automotive industry moves to the software-defined vehicle 
and selling feature upgrades updated over the air, it is clear that 
the development approach used for static architectures is no 
longer fit for purpose. Adding timing requirements to flowcharts 
enables engineers to quantify the impact of hardware changes, 
feature changes, and feature updates on today’s domain 
controllers and automotive high-performance computing (HPC) 
platforms. Discover how this approach significantly reduces the 
issues typically arising during integration that are found late in the 
development process, securing the dynamism the automotive 
industry seeks from the software-defined vehicle.



Why an event-chain-centered architecture design is the correct response 
to the challenges of developing software-defined vehicles

Function nets cannot remain the supreme structure 
by which E/E architectures are organized

The automotive industry is transitioning from 
today’s predominantly domain-oriented E/E 
architecture toward a zonal architecture. This 
provides OEMs with an approach that enables 
greater flexibility that, thanks to a focus on 
services and high-performance compute 
platforms (HPC), ensures continuous product 

maintenance over a vehicle’s lifetime. Short 
development cycles detached from the traditio-
nal vehicle development approach, coupled with 
over-the-air updates, will deliver on this vision of 
the software-defined vehicle, enabling functiona-
lity to be added by users in the form of upgrades 
after purchase.

With software already accounting for the vast 
majority of added value in the vehicle, hardware 
dependency must be pushed as far back in the 
development process as possible. In fact, it must 
be possible to define and develop software 
almost independently of the hardware. This also 
affects requirements management, something 
that is currently still far too oriented towards 
static architectures, often in the form of function 
nets. Although this remains indispensable for 
decomposing the overall system into its logical 
and technical components of software and hard-
ware, it is already the result of a much more deci-
sive step: The analysis of the processes in the 
system that are necessary to achieve a specific 
customer function. Finally, many such functions 
must be allocated to the available resources in 
the finished vehicle without causing conflicts. 

The actual know-how of vehicle manufacturers 
lies in their knowledge, built up through years of 
experience and systematic collection of user 
feedback, as to which dynamic requirements can 
be experienced and differentiated by their custo-
mers. For example, how many milliseconds 
should elapse between pressing a control and 
the acoustic, haptic, and visual feedback? After 
what time should a lane-changing automated 
driving function initiate a lane change? And how 
should this time vary between the sportier and 
more comfort-focused driver? 

Even these limited examples highlight how a 
single system component, typically implemented 
as a software processing step, is reused in sever-
al scenarios or customer functions to satisfy 
completely different requirements. Additionally, 
that processing step can range from simple, 
such as controlling a turn signal, to highly com-
plex, such as the selection of an optimal driving 
maneuver. 
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With requirements management approaches 
oriented only to the structure of the function net, 
it is impossible to capture these varying cont-
ext-sensitive requirements separately and inde-
pendently of one another. As a result, continuous 
maintenance and traceability through to 
testing are virtually impossible [1] .

Function nets mix up the causal relationships of 
most logical processing steps, thereby obscuring 
the view of the causal relationships between the 

function blocks. The signal networks between 
the blocks may even contain cycles that would 
be missing in a purely causal view (Figure 1). It is 
not possible to unambiguously determine an 
end-to-end latency without decomposing the 
network back into its causal relationships. So 
why not start with the causal relationships in the 
requirements management and link them to the 
functional network via trace links?
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Figure 1: 
Example of a function net (black) with two causal event chains, EC1 (blue) and EC2 (red). 
While the function net contains a cycle, neither EC1 nor EC2 is cyclical.
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How event-chain-centered architecture design 
solves the problem

Event chains describe causal relationships 
between the steps previously described by 
decomposing a behavior. In software, but also in 
system design, we often speak here of ‘proces-
sing steps in a sequence.’ 

Let us consider the system ‘hazard warning 
lights’ and how event chain analysis affects the 
precision of the dynamic requirements. The first 
obvious event chain handles the switching-on of 
the hazard light feature. The second event chain 
deals with the cyclical switching of all the lamps. 
Both aspects can be experienced by the vehicle’s 
user and are therefore of central importance for 
the system. 

Event chains enable the precise analysis of the 
causal relationships involved in each scenario 
and thus also the assignment of requirements to 
the event chain step in the context of the scena-
rio. For example, during the switch-on of the 
indicator LEDs, the software component’s laten-
cy is important. However, when it comes to cont-
rolling the flashing, the synchronicity between 
the lamps during ongoing operation is of primary 
concern.

Event chains thus enable the separation of static 
and dynamic architecture and are key to the follo-
wing critical architecture design patterns:

• Separation of Concerns: All important require-
ments for dynamic behavior can be clearly
assigned at the event chain steps in require-
ments management, and can even be main-
tained there at a logical level independent of
static decomposition as provided by a function
net. This also brings the valuable know-how of
the vehicle manufacturers one step further
removed from the technical level.

• Modularity: Essential for software-defined
vehicles, but already being driven by today’s
platform-thinking with variants, it is necessary
to enable or disable various customer func-
tions within a project. In addition, there is the
aspect of multiple use: Static components
(e.g., software components that implement
specific processing steps) can be required
several times in different customer functions,
or even variants thereof, but must still meet
specific requirements in each use case (reused
software components).

• Test and Verification: Since requirements are
assigned to event chain steps, this means they
can be assigned for testing to precisely the test
case, location, and time for which they are also
relevant or verifiable. This leads to a consistent
derivation of test cases, enabling a path from
the requirement to its acceptance to be estab-
lished.
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Why sequence diagrams 
quickly reach their limits

Unfortunately, SysML sequence diagrams are 
only suited to simple descriptions of many dyna-
mic processes. Certainly, they support modeling 
control flows such as alternative paths, loops, or 
parallel execution. So, there is no question of 
whether sequence diagrams can describe com-
binations of different flows. However, as seen in 
Figure 2, they rapidly reach their limits. 

The dependency graph shows that the final node 
(bottom) can only be reached when all its 
predecessors, here C and D, have been reached. 
But these, in turn, depend on A and B. The chal-
lenges associated with describing all possible 
sequential processes in a sequence diagram 
quickly materializes as the results become 
unnecessarily complex and challenging to read.

Figure 2: 
Example of dependency graphs (left) and the corresponding sequence diagram (right) that, 
as a result, has become complex to read.
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Flowcharts are an effective tool for 
effective event-chain-centric architecture design

tion of the description of causal relationships 
from the process or function calls executed at 
the technical level that is subject to scheduling. 

For example, if a function is permanently assi-
gned to a specific process within a specific 
period, it is executed cyclically. However, due to 
the execution semantics of the associated event 
chain, an event chain step that refers to this func-
tion is only switched on when the causally neces-
sary previous steps have also been observable in 
the system since that event chain’s start. In this 
way, it is possible to start a timer when the trigger 
event for the event chain occurs to then measure 
the respective time in the context of the event 
chain for the function calls that causally follow. In 
this way, the time required for an emergency 
braking function to reach the desired braking 
pressure from the sudden occurrence of an 
external obstacle can be specified precisely in a 
machine-readable form.

Flowcharts, as defined by the OMG[2], are well 
suited to record the previously mentioned 
aspects of an event chain in a formal and machi-
ne-readable way, even for complex scenarios. 
They are well known, supported by a wide range 
of architectural tools, easy to understand, and, 
like sequence diagrams, offer formally specified 
execution semantics that makes them easy to 
simulate.

When compared to the classical, purely linear 
form of event chains, they have the advantage 
that they provide the linguistic means needed to 
describe almost any arbitrarily complex process. 
As we will show later, they are particularly helpful 
to phrase timing requirements to assure correct 
behavior on complex patterns like the safety 
supervisor.

Analogous to the separation of dynamic and 
static architecture, flowcharts enable the separa-

Methods for simplifying 
the design of complex functions

A vital tool in the development team’s toolbox is 
the ability to separate function from implementa-
tion. As far as possible, the implementation 
should also be independent of the hardware 
architecture. This is known as separation of 
concerns.

Consider the customer-function “advanced 
driving system” (ADS). This customer function 
employs several sub-components that are 
divided further into sub-functions. ADS_Planner, 

one of these sub-functions, cyclically delivers a 
new path to the vehicle’s actuators. The safety 
supervisor (SSV), a sub-component, adds redun-
dancy and diverse software design for accident 
prevention for safety reasons (Figure 3). This is 
achieved by comparing the path provided by the 
ADS_Planner with its own analysis of the traffic 
situation, based on less complex sensor informa-
tion, with the only aim to foresee an imminent 
collision when continuing to follow that path. 



If it detects such a threat, it would switch to an 
alternative safe path. More on the safety 
supervi-sor pattern can be found in work by M. 
Törngren[3]  and other similar sources.

This is analogous to a learner driver failing their 
driving test when the driving instructor has to 
intervene. Such a path switch is considered an 
error in the system and would lead to a safety 
shutdown, which is, of course, to be avoided. 
Therefore, it is crucial to coordinate the timing 
between the ADS Planner and the SSV so that the 
ADS Planner can handle dangerous situations 
independently and without unrequired interventi-
on by the SSV.

Without an event-chain-driven architecture 
design, this circumstance only becomes appa-
rent at the technical level because this is when 

the actual runtimes and cycle times of the tasks 
become known. Integrators cannot tackle this 
challenge because the causal dependencies 
between the functional chain steps are unknown 
at their stage in the development process. Thus, 
they are unable to identify and eliminate such 
issues systematically.

By introducing event chains, complex timing 
requirements can be added to capture and avoid 
these situations. As can be seen in Figure 3, 
timing requirements can be formulated based on 
the steps of an activity chart. This timing require-
ment assures that, after a concrete sensing 
response from Sensor A has been acquired, 
Sfty_Fusion should not complete before ADS_-
Planner, thus assuring that no safety shutdown 
due to a timing issue can occur.
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Figure 3: 
Example of a synchronicity timing requirement: 
“The ADS_Planner must complete before Sfty_Fusion”



Figure 4 shows a timing sequence that, from the 
integrator’s point of view, looks acceptable 
because all tasks can be processed within their 
period. However, the problem of inconsistent 
data between ADS and SSV  materializes at time 
instance tsfty_shutdown .

SSV starts, but ADS_Planner has not yet proces-
sed the most recent sample from Sensor_A. 
Therefore, the SSV will initiate a safety shutdown 
although the ADS_Planner completes its com-
putation in time (with regards to its deadline 
determined by its period).

Including the timing of event chains within the 
requirements management can resolve such 
challenges independently of further architectural 
decisions, such as mapping functions to proces-
ses on cores. With event chains providing the 

exact timing requirements, the system integrator 
clearly sees the synchronicity requirements’ 
violation (see Figure 4). They can now apply 
countermeasures without having to involve the 
function developers.
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Figure 4: 
State-chart visualization of the timing sequence ADS when mapped to hardware with two cores.



Modularity 

The future of the software-defined vehicle 
depends on modularity. New functions can be 
added to existing systems that rely on data provi-
ded by existing sensors and data-fusion modu-
les. The challenge is proving that adding these 
capabilities does not impact existing functionali-
ty.

Let’s assume that our simple ADS will be exten-
ded to include a lane change maneuver (LCM) 
function. Because of the increased complexity, 
several functional requirements must be added 
to the ADS_Planner. All this information is captu-
red in a new event chain, “LCM.” The new system 
now has to implement both the ADS event chain 
and the new LCM event chain (refer to Figure 3). 
It should be noted that the LCM event chain 
would structurally look the same but with more 
functional requirements attached to it. It should 
be kept in mind that each event chain refers to 
different scenarios. ADS addresses driving 
scenarios where no lane change is involved, and 
LCM addresses scenarios for the extended func-
tionality, including lane change. The effect on the 
existing implementation is that more functional 
requirements need to be implemented by ADS_-
Planner, resulting in longer overall runtimes. 

Let’s further assume our vehicle OEM has two 
car models, a base car with simple hardware 
named ‘Small-Foot,’ and a luxury car with more 
powerful hardware named ‘Big-Foot.’

The new implementation of ADS_Planner misses 
its timing requirements when running on the 
Small-Foot hardware but meets them when 
executed on Big-Foot. Therefore, the OEM can 
offer the upgrade only for luxury cars by exchan-
ging the implementation of ADS_Planner. 

Using event chains can even help when more 
detail is needed. Let’s assume the new imple-
mentation of ADS_Planner would miss its timing 
requirements even on Big-Foot but only under 
specific environmental conditions. This occurs 
when the vehicle is inside a tunnel with many 
fluorescent tubes, making the vision process 
more computationally intensive. In this case, the 
developers could decide to disable lane-change 
at runtime if vision processing exceeds a specific 
timing budget and temporarily fall back to ADS 
without lane-change. This detailed understan-
ding of event chains helps maintain traceability 
between functional and timing requirements and 
their implementation, even in complex scenarios 
determined by hardware decisions, variants, and 
other choices.
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Test and Verification

Testing traditionally focuses on correct functio-
nality, with tests designed to check that, for 
example, the headlights turn on through manual 
switch operation or in response to sundown 
while driving. 

What is overlooked, however, is the temporal 
aspect of testing. For example, does our ADS_-
Planner step still fulfill its timing requirements 
once integrated alongside other functions? With 
timing as part of the requirements, it is easy to 
create such tests and ensure that they are tested 
throughout the development process and under 
the defined operational conditions. Event chains 
allow a clear definition of a start-event, and iden-
tification of intermediate steps and phrase timing 
requirements between those steps. Event chain 
steps map to functions within the function net. 
Therefore, events emitted by these functions 
(e.g., start or end of a function) can now be seen 
in the context of the state of the event chain – the 
event chain instance. The event chain can be 
seen as a specification of what an observer 
needs to observe to check whether the device or 
system under test meets its requirements. 

Any time the start event of an event chain beco-
mes observable in the system under test, the 
observer would start a new instance of the event 
chain and assign a state to it. The state describes 
how far the instance could have progressed due 
to the events observed after the start event. The 
observer can therefore check any requirements 
based on the steps currently being progressed or 
switched on. 

The example in Figure 4 showed how an obser-
ver would trigger the yellow event chain instance 
while observing the starts and ends of the func-
tions (any yellow arrow marks a new state) 
referenced from event chain ADS in Figure 3. As 
soon as a test bench is available to observe the 
steps relevant to the event chains, the above 
concept of an observer based on event chains 
can easily verify even complex timing require-
ments such as the one depicted earlier related to 
synchronization. This is the case even if one 
event chain is simultaneously active in multiple 
event chain instances because its start event has 
been triggered multiple times.

Note that once all timing requirements are captu-
red, and all timing parameters needed to approxi-
mate the timing behavior of the system under 
test are available, it is possible to verify the timing 
requirements. This is achieved even in non-func-
tional simulations with tools like chronSUITE, 
even before a functional implementation is avai-
lable. Such simulations are helpful to assure 
fulfillment of timing requirements after develop-
ment iterations, feature enhancements, and 
other changes without having to go through HIL 
testing. It also allows consistency checking and 
a review of the static architecture against the 
dynamic requirements at the earlier stages of the 
development process.
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Summary

As the automotive industry transitions to the 
software-defined vehicle, domain controllers, and 
high-performance computing (HPC), it is clear 
that the traditional approach to software 
development is no longer suitable. With a focus 
on modularity, software reuse, and over-the-air 
updates for fixes and upgrades, the methods 
used to create yesterday’s static architectures no 
longer work for dynamic, AUTOSAR Adaptive 
solutions.

As highlighted through the examples provided 
here, specifying timing requirements early and in 
the context of scenarios separates the dynamic 
architecture from the static architecture, even at 
functional level. This leaves architects and 
system integrators with more degrees of 
freedom when undertaking design decisions. As 
they work through hardware selection or the 
assignment of tasks to core, the demands of 
each task or runnable in the context of the broa-
der application are significantly clearer. 

Additionally, it delivers greater stability at the 
logical layer. Bearing in mind the importance of 
reuse, timing requirements can live with their 
functions and scenarios, allowing code to be 
reused more successfully in new projects or even 
in cost-optimized solutions. Thanks to the 
derived timing tests and verification, it also provi-
des more confidence when new functionality is 
added to an existing codebase.

Event-chain-centered architecture design allows 
system architects and automotive development 
teams to tackle these new challenges. Activity 
charts, as specified by the OMG, are the ideal 
technology to describe event-chains simply and 
effectively.

Automotive software teams that move to a dyna-
mic, event-chain-driven system design process 
find that the timing-related issues described here 
rarely appear in their projects. After hundreds of 
projects at a host of automotive OEMs, Tier 1s, 
and sub-suppliers, Inchron’s chronSUITE has not 
only become a standard tool in the development 
process, it is recognized as important enough to 
warrant changing that process.
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If you’d like to learn more about how Inchron’s chronSUITE is used to tackle such 
challenges, whether on a running project or from the start of a new one, please feel 
free to get in touch. 

We’d be more than happy to help.
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