Virtual Verification of Timing Requirements Shortens Development Cycles

As the complexity of features continues to increase over the lifetime of a project, the consumption of available resources in the target hardware also increases. Verifying that performance requirements remain fulfilled only at HIL (Hardware-in-The-Loop) integration not only ties up valuable test resources but, due to its operational complexity, frequently stalls an agile workflow that is striving for shorter development cycles. For this reason, the industry is currently moving towards a model-based approach with real-time simulators evaluating increasing numbers of real-time requirements even without having to turn to real target hardware.

The INCHRON Tool-Suite incorporates everything needed for virtual verification of timing requirements at model level, be it a simple manual process or as part of a unified continuous integration scenario. Test results, findings, and even optimizations and resolutions require just a matter of minutes to hours to implement, not days. Hidden pitfalls are discovered at early stages of the design process, development cycles speed up and project delays are diminished

Free 30 Minutes Telephone Consultation

To experience it for yourself, get in touch and request a free 30-minute consultation with one of our timing experts.

Model-Based Simulation of Safety-Critical Automotive Control Systems

Embedded systems highly contribute to the efficiency, safety, and usability of today’s means of transport such as cars and airplanes. Due to the possible hazards and risks involved with their operation, safety standards like DO-178C for avionics and ISO 26262 for automotive recommend the application of methods and tools regarded as state-of-the-art. Functional safety requirements imposed on hardware and software imply the detection of malfunctions and taking corrective actions, before hazards actually may occur. Among the key challenges is the prediction and verification of the system’s timing behavior. Experience from numerous automotive development projects shows that model-based methods and real-time simulation tools should be used at an early stage in order to effectively guide design decisions and achieve the safety goals set at the system level.

Verification of Timing and Performance Requirements

Timing and performance requirements must be continuously monitored during the development life cycle guiding architectural design decisions and optimizing the allocation of resources. To efficiently handle the vast number of requirements, means to automate the verification process are needed.

Trace data obtained by virtual prototyping and simulation or by measurements on the target hardware is uploaded to a dedicated test system running the actual trace analysis solution. Here data from multiple ECU sources is merged, synchronized and afterwards verified against the set of timing and performance requirements. Eventually, an evaluation report is generated, and notifications to interested stakeholders are sent out.